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Macroscopic evidence of quantum coherent oscillations
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Abstract. Molecular nanomagnets, besides promising to open new frontiers in technology, have attracted
huge interest in the scientific community because they can exhibit the phenomenon known as quantum
tunnelling of the magnetization, i.e. coherent fluctuations of the direction of the total spin vector. In this
paper we study a different quantum phenomenon involving fluctuations of the magnitude of the total spin
vector. These fluctuations are related to the mixing between states with different spin quantum number,
and imply new macroscopic effects, which we theoretically investigated in the Mn-[3 × 3] grid.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 75.50.Xx Molecular magnets –
52.70.Ds Electric and magnetic measurements

Molecular nanomagnets (MNMs) [1–3] are clusters con-
taining a finite number of transition-metal ions whose
magnetic moments (spins) are so strongly coupled that
at low temperature each molecule behaves like a single-
domain particle with fixed total spin. Being at the
crossover between classical and quantum regimes, MNMs
exhibit at the same time classical properties of macro-
scopic magnets such as magnetization hysteresis, and
quantum phenomena like tunneling of the direction of the
total spin through energy barriers [4–6]. MNM systems are
interesting also for potential technological applications, as
envisaged for the implementation of quantum computing
algorithms [7], or for dense and highly efficient memory
devices [1]. Here we study a new macroscopic manifes-
tation of a quantum phenomenon involving fluctuations
not only of the direction, but also of the magnitude of
the total spin, and we show that it is realized in a Mn-
[3 × 3] grid [8,9]. Recognizing the effects of these fluctua-
tions is essential to achieve a satisfactory understanding of
the role played by quantum mechanics in complex meso-
scopic magnetic systems. Quantum magnetic phenomena
were identified even in molecules of great biological inter-
est such as ferritin [10,11].

The advantage of studying quantum phenomena in
MNMs is that the vanishingly small interaction between
different molecules allows single-molecule phenomena to
be observed at a macroscopic scale, because the crystal be-
haves like a collection of independent objects [2,12], each
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described in general by spin Hamiltonians of the form [13]

H =
∑
i>j

Jijsi · sj +
∑

i

si ·Di · si

+
∑
i>j

si ·Dij · sj + µB

∑
i

giB · si, (1)

where si are spin operators of the ith ion in the molecule.
The first term is the isotropic Heisenberg exchange in-
teraction, the second and third terms describe the local
crystal-field and the anisotropic intra-cluster spin-spin in-
teractions. The last term is the Zeeman coupling with
an external field B in which isotropic g-factors are as-
sumed. While the Heisenberg term is rotationally invari-
ant and therefore conserves the length |S| of the total spin
S =

∑
i si, the anisotropic terms break rotational invari-

ance and do not conserve this observable. Nevertheless,
since the Heisenberg contribution is usually largely domi-
nant, |S| is nearly conserved, and the energy spectrum of
H consists of a series of level multiplets with an almost
definite value of |S| (expressed in terms of the quantum
number S as

√
S(S + 1)). Thus, quantum fluctuations of

|S|, which are associated with mixing of states with dif-
ferent value of the quantum number S (“S-mixing” [14]),
either are zero or are expected to produce negligible effects
on the macroscopic behavior, and are therefore neglected
in virtually all studies. A major theoretical goal would be
to identify a clear macroscopic signature of such fluctua-
tions, and a model system displaying such effect.
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Fig. 1. A schematic representation of the molecular structure
of the Mn-[3×3] grid showing the network of manganese (dark)
and oxygen (bright) bonds. Other atoms are omitted for clar-
ity. Arrows indicate the spin directions in the classical ground
state.

In this paper we show that favorable conditions are
met in the Mn(II)-[3×3] grid-like cluster [Mn9(2POAP-
2H)6](ClO4)6·3.57MeCN·H2O (hereafter Mn-[3 × 3], see
Fig. 1), a system that has been recently characterized by
magnetization and torque measurements [9,15]. Our theo-
retical calculations suggest grid-shaped molecules as good
candidates to study fluctuations of |S|, since the lowest
level is expected to display significant S-mixing with the
first excited multiplet. In fact, unlike in ideal ring-shaped
molecules [16], in the [3×3] grid the two lowest manifolds
of the exchange part of the spin Hamiltonian belong to the
same irreducible representation of the molecular symme-
try group. Therefore, the application of a suitably oriented
magnetic field induces a series of anticrossings (ACs) be-
tween the ground state and levels originating from higher
excited manifolds (see Fig. 2). At the AC fields, S-mixing
in the ground state is maximum, and quantum fluctua-
tions of |S| are greatly enhanced. Torque [9] and neu-
tron [17] experiments on Mn-[3×3] show that the zero-field
gap between the two lowest S-multiplets is small enough
for the ACs to occur at fields within experimental reach.

Mn-[3×3] crystallizes in the space group C2/c, and the
cation [Mn9(2POAP-2H)6]6+ exhibits a slightly distorted
S4 molecular symmetry with the C2 axis perpendicular
to the plane of the cluster [8]. The average distance be-
tween the Mn(II) ions is 3.93 Å, the smallest distance
between clusters is larger than 8 Å. For a cluster com-
posed of nine interacting Mn(II) spins with si = 5/2 the
dimension of the Hilbert space is 10077696. The difficul-
ties related with this huge dimension have been overcome
by exploiting both the irreducible tensor operator tech-
nique and the Lanczos algorithm for the exact diagonali-
sation. The two-step procedure already developed [18] has
allowed the inclusion of S-mixing effects in the calcula-
tion. The exchange integrals and the single-site and spin-
spin anisotropy tensors have been determined by neutron
spectroscopy [17]. All exchange integrals between nearest-
neighbors are found to be nearly equal to 0.47 meV, apart

Fig. 2. Calculated energy levels of the Hamiltonian (Eq. (1))
with the parameters given in the text, and with the direction of
the applied field forming an angle θ = 2.8◦ with the grid plane.
Energies are plotted as functions of the applied field intensity
B. The ground state energy is set equal to zero. Arrows indicate
the anticrossings produced by S-mixing between the two lowest
levels. The inset shows Seff as functions of B for the same
angle at T = 0, where Seff is defined through the relation
Seff (Seff + 1) = 〈S2〉.

from J18, J78, J34 and J45 (see Fig. 1), whose values are
0.33 meV. Next-nearest-neighbor exchange interactions
can be neglected. Concerning the local crystal-field, the
second term in equation (1) can be approximately rewrit-
ten as

∑
i

si · Di · si = D
∑

i

[
s2

iz − 1
3
si(si + 1)

]
, (2)

with D = −6.1 µeV. The intracluster dipole-dipole in-
teraction Dij has been evaluated within the point-dipole
approximation [13]. At last, gi = 2 is assumed, as appro-
priate for Mn(II) ions.

With these experimentally determined parameters, the
energy spectrum for B = 0 consists of many level multi-
plets with an almost definite value of S. The ground mul-
tiplet has S = 5/2, and the four lowest-lying excited mul-
tiplets have (in order of increasing energy) S = 7/2, S =
3/2, S = 3/2, S = 9/2. These multiplets are separated
by the isotropic exchange and split by the anisotropic in-
teractions. The lowest levels are shown in Figure 2. The
application of a magnetic field B in a direction outside the
grid plane and different from that of the C2 axis produces
several ACs involving levels belonging to different multi-
plets (see Fig. 2). As the AC fields Bc are approached
the multiplet mixing is enhanced. For B = Bc, the spins
in each cluster oscillate coherently between states with
different values of S, which therefore is no longer a good
quantum number. This can be inferred for example for the
ground state ACs (indicated by the arrows in Fig. 2) from
the inset in Figure 2, which shows the field-dependence at
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Fig. 3. Two-dimensional plot of the calculated torque as a
function of the applied field direction θ and intensity B at
T = 0.05 K with parameters of Hamiltonian equation (1) as
given in the text.

T = 0 of the quantity Seff , defined through the relation
Seff (Seff + 1) = 〈S2〉. When B is close to Bc the value
of Seff is intermediate between half integers, e.g. 5/2 and
7/2 at the first level AC, thus confirming that the ground-
state wavefunction is a superposition of different total-spin
states.

This opens a scenario in which not only the direction of
the total spin fluctuates in time, as in the case of the well-
studied quantum tunnelling of the magnetization [4–6],
but even its length fluctuates (quantum dynamics of the
total spin, or briefly QDTS). Moreover, by properly tun-
ing the direction of the applied magnetic field, the AC
splitting can be made as large as several kelvin degrees,
thus overcoming the problem of decoherence due to hyper-
fine fields and to cluster-cluster interactions. Most impor-
tantly, in the Mn-[3× 3] grid several of these ACs involve
the two lowest energy levels, thus opening the possibil-
ity to detect the QDTS by means of macroscopic low-
temperature magnetic bulk techniques. In particular, our
calculations show that at low temperature, in correspon-
dence to each AC between the two lowest lying states,
a sharp peak should be detected in the torque signal (as
function of the field intensity B) when the direction of the
field θ is close to the grid plane (θ ∼= 0◦) or almost perpen-
dicular to it (θ ∼= 90◦) (see Figs. 3 and 4). Such peaks are
sharper the lower the temperature, but are still clearly vis-
ible at temperatures easily reachable experimentally. The
precipitous drop of the torque signal as a function of θ near
θ = 0◦ and θ = 90◦ is due to a change of sign imposed by
symmetry (as M×B = 0 when B points along a principal
direction of the susceptibility tensor of the system).

By comparing Figures 3 and 4 with the correspond-
ing spectrum reported in Figure 2, it is evident that a
torque peak appears in correspondence to each AC in-
volving the ground state. While the first peak at low field
corresponds to an intra-multiplet AC, the peaks at about
6.6, 8.9 and 11.2 tesla represent a direct consequence of
the coherent superposition of different total spin quantum
states. The link between the peaks in the torque signal

Fig. 4. (a) Plots of the calculated torque at T = 0.4 K as a
function of the applied magnetic field B for two selected direc-
tions θ lying close to the grid plane. Colored dashed lines rep-
resent the calculated torque at the same angles with S-mixing
eliminated by hand, i.e. with quantum fluctuations of |S| re-
moved. The dashed gray line represents the torque calculated
using the classical version of the Hamiltonian equation (1) at
T = 0 for θ = 2.8o. The classical value of the torque has been
rescaled (by 0.25) to fit the figure. (b) calculated torque at
T = 0.4 K as a function of the applied field intensity B for
several directions θ.

and the level ACs is demonstrated in Figure 4a, where the
torque curves calculated with the mixing artificially forced
to zero are shown by colored dashed lines. When S-mixing
is neglected, every inter-multiplet AC becomes a crossing,
the fluctuations of the total spin vector are suppressed and
the peaks in the torque curve disappear. Thus, without S-
mixing the torque curve should exhibit the step-like field
dependence usually observed in MNMs [19]. The compar-
ison between solid and dashed curves in Figure 4a shows
clearly that the predicted peaks in the torque would be
a direct macroscopic manifestation of the QDTS at the
level ACs. Also, these spin fluctuations and the associated
peaks are of purely quantum origin, as these are absent in
the classical version of the Hamiltonian equation (1) (see
the gray dashed curve in Fig. 4a).

The fact that these torque peaks directly reflect the
large enhancement of quantum fluctuations of |S| at the
ACs can be understood by a simple physical picture. In the
following we define the z′ axis parallel to B. The torque
is proportional to the magnetic response perpendicular to
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Fig. 5. Numerical calculations of the T = 0 fluctuations of
Sz′ (“parallel”) and of Sx′ (“perpendicular”), as a function of
the applied magnetic field (forming an angle θ = 2.8◦ with the
grid plane), with and without S-mixing. Parameters are given
in the text.

the field direction, i.e. to 〈Sx′〉. Fluctuations of |S| are ac-
companied by fluctuations of the magnetization (Sz′) [20],
and these latter are deeply connected with 〈Sx′〉. Accord-
ingly, Sx′ tracks the increase and decrease of these fluctua-
tions while sweeping over the AC, leading to a peak in the
torque. Indeed, near the ACs, the ground-state wavefunc-
tion can be written to a good degree of approximation as

|G〉 =
1√
2
(a(B)|Γ1, M〉 + b(B)|Γ2, M + 1〉), (3)

where a(B)2 + b(B)2 = 2 by normalization. For B �
Bc, b(B) ∼ 0, a(B) ∼ √

2, and the ground state reduces
approximately to an eigenstate of Sz′ , |Γ1, M〉, where M
is the corresponding eigenvalue and Γ1 represents the set
of additional labels necessary to identify the state. For
B � Bc, a(B) ∼ 0, b(B) ∼ √

2, and the ground state
reduces approximately to |Γ2, M + 1〉.

At T = 0 the torque is given by

τ ∝ B〈Sx′〉 = Ba(B)b(B)〈Γ1, M |Sx′ |Γ2, M + 1〉. (4)

Since 〈Γ1, M |Sx′ |Γ2, M + 1〉 is almost independent on B,
the field dependence of τ comes entirely from the factor
Ba(B)b(B) = Bb(B)

√
2 − b(B)2.

Quantum fluctuations of the magnetization are usually
characterized by the quantity

(∆Sz′)2 = 〈S2
z′〉 − 〈Sz′〉2 =

b(B)2

2
− b(B)4

4
. (5)

Therefore,
τ ∝ 2B∆Sz′ . (6)

In case of anticrossing, ∆Sz′ is maximum at Bc, where
b(Bc) = a(Bc) = 1, and the torque peaks. In case of

Fig. 6. Torque signal calculated for Mn-[3×3] at T = 0 and
T = 1.75 K as a function of the amplitude of a magnetic field
B applied along a direction forming an angle θ = 65.9◦ with
the grid plane. Dashed lines represent the calculated torque at
the same angle and temperatures with S-mixing neglected.

 

 

 

 

Fig. 7. Numerical calculations of the heat capacity as a func-
tion of the applied magnetic field for several directions θ, at
T = 0.4 K.

crossing ∆Sz′ is always zero because either b(B) = 0 or
a(B) = 0, and the torque does not peak. As a further con-
firmation of this picture we show in Figure 5 numerical
calculations of the fluctuations of Sz′ (“parallel”) and of
Sx′ (“perpendicular”), with and without S-mixing.

The torque is the macroscopic magnetic bulk technique
displaying the clearest signature of S-mixing. When the
temperature T increases these effects wash out, and in-
deed published torque measurements on Mn-[3× 3] [9] do
not display peaks because data were collected at too high
a temperature. Nevertheless, these measurements show
another remarkable effect of S-mixing: a change of sign
had been observed in the torque signal at T = 1.75 K
and B = 7.5 T and this had been explained by assuming
that the axial anisotropy was easy-axis for S = 5/2 and



S. Carretta et al.: Macroscopic evidence of quantum coherent oscillations of the total spin 173

easy-plane for S = 7/2. If S-mixing is neglected, the ax-
ial parameters describing the anisotropic splitting of the
spin multiplets can be obtained by projecting the com-
plete Hamiltonian onto each total-spin subspace (strong-
exchange limit):

Hsub = Dsub

[
S2

z − 1
3
S(S + 1)

]
, (7)

where S is a vector spin operator with S equal to the total
spin of the subspace.

The parameter Dsub is determined by crystal field and
dipolar projection coefficients. We find for the two lowest
multiplets

D5/2 = −41 µ eV, D7/2 = −2.5 µ eV. (8)

The origin of the change of sign is therefore different from
that proposed in [9]. Indeed, this effect comes from the
interplay of the positive value of the axial anisotropy for
the higher-lying S = 9/2 level (D9/2 = 3.8 µ eV) on the
one hand, and S-mixing on the other hand. In the lack
of S-mixing the change of sign in the torque would occur
at about 9 T, when a state belonging to the S = 9/2
manifold becomes the ground state. However, since the
S = 7/2 and S = 9/2 multiplets mix heavily, the change
of sign is shifted to lower fields (see Fig. 6).

We have also calculated the low-T heat capacity as a
function of the applied field (see Fig. 7). This quantity
provides a way to assess the value of the AC gaps as a
function of the field direction. For θ �= 0 anticrossings
open up and the heat capacity does not vanish at Bc.

In this paper we have identified a new clear-cut macro-
scopic manifestation of a quantum phenomenon character-
izing the microscopic dynamics of magnetic clusters. We
have shown that torque measurements can provide direct
evidence of quantum fluctuations of the total spin length,
and we have studied a model system displaying such effect.
The comprehensive understanding of the spin dynamics in
mesoscopic systems like molecular nanomagnets is essen-
tial to understand the crossover between quantum and
classical mechanics and to make rational design of these
compounds possible, especially in view of the promising
applications.
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